3的倍数特征教学反思
作为一名优秀的人民教师,教学是我们的工作之一,对教学中的新发现可以写在教学反思中,那么问题来了,教学反思应该怎么写?以下是小编帮大家整理的3的倍数特征教学反思,希望能够帮助到大家。
3的倍数特征教学反思1今天我教学了3的倍数的特征,我首先复习2、5的倍数的特征,然后我出示了几个不同的四位数,问生:谁能很快判断出哪些是3的倍数?想知道有什么窍门吗?这们引入课题很顺当,学生也很有兴趣。下面,我先让学生写出50以内3的倍数,再观察:3的倍数有什么特点?学生一时很难发现,仍从个位上的数去观察,但马上被其他同学否定,当时我心里有点担心怎么看不来呢?,我启发学生再看看个位和十位上的数,通过交流后,在部分学生马上发现把每个数的数字加起来的和除以3都是正好除的,我让学生用这个发现对书上第76页的表格100以内的数进行验证一下,学生验证后我又让学生从100以外的数来验证。从而得出了3的倍数的特征。再通过用1、2、6可以写成哪些三位数?这些三位数是3的倍数吗?由此有什么发现?让学生进一步明白3的倍数跟数字的位置没有关系,只跟各位上数的和有关系。这样学生在完成想想做做第5题时学生思考时就不会漏写了。最后,通过后面的练习,我觉得在教学某些知识时,最好老师不要轻易下结论,只有让他们自己在反复实践中自己得出结论,才能牢固地掌握知识。
3的倍数特征教学反思23的倍数是在学习了2、5的倍数特征的基础上进行学习的,我让孩子们提前进行了预习,通过授课发现孩子们的预习没有达到预想的效果。学生在汇报时能够圈出3的倍数,而且非常准确,在汇报3的倍数的方法时,他们大多数是借助结论得出来的,没有体现出他们研究的过程。因此,我在课上进行了及时的指导,把孩子们需要汇报的过程进行了详细的说明。孩子们很快理解了我的意思,立刻进行了新的分工。第一位同学汇报了他们找到的3的倍数,并介绍的找3的倍数的方法即,用这个数除以3,看商是不是整数而且没有余数。接下来汇报百数表中前十个3的倍数,让大家观察个位上的数字,通过观察发现3的倍数个位上是0-9的任意一个数,不能像2、5的倍数特征只看个位的特殊数就行了。因此只看个位不能确定是不是3的倍数。
由于孩子们有了提前的预习,孩子们心目中已经有了结论。因此在这个时候孩子们思考的深度不够,没有理解教材的意图。教师把教材的意图有意识地进行了渗透,让学生驻足片刻,把握课堂的结构。
第三个环节,孩子们发现斜着看每个数的各位逐渐加一,十位逐渐减一,因此个位上的数字和十位上的数字之和不变,而且都是3的倍数。让孩子试着总结结论:两位数个位上和十位上的数字之和是3的倍数,那么这个数也是3的倍数。
第四个环节,其实并不是把3的倍数特征总结出来了就完成任务了。这个结论只是通过观察百数表得出的关于两位数的结论,两位数满足这个特征,是不是所有的数都适用呢?于是让孩子试着写一个三位数、四位数而且是3的倍数,然后用这个结论进行验证,看是否符合。孩子们先试着写几个3的倍数,老师罗列到黑板上,然后分别用用各个数位之和相加的方法和除以3是否有余数的方法进行验证。验证的结果是肯定的,因此得出的结论适合所有的数。
到这里孩子们对于3的倍数特征已经理解的很透彻了,做起练习来也显得得心应手。孩子体验了结论得出的过程,每一个环节的设计都有他的意图,在每个环节孩子都有思考,有思维的碰撞,这才是教材的意图,才是真正的数学课。
3的倍数特征教学反思3“能被3整除数的数”一课,能体现新的教育理念、教育思想。仔细分析,有以下几个特点:
1、确立了基本技能目标和发展性目标并重的教学目标。
本节课不仅重视学生掌握能被3整除数的特征,并能运用特征进行正确判断,同时十分重视学生学习过程的体验和方法的渗透,让学生通过“猜测——验证——提出新的假设——验证”的探索过程来发现知识,获得结论,并感悟方法。
2、理性处理教材,使教学内容生活化。
教科书只是提供了学生学习活动的基本线索。教学中,教师要充分发挥主观能动性,创造性的使用教科书,本节课重新设计例题,通过用“0——9”十个数字组成能被整除的三位数让学生探索特征,这样处理使教学内容有较强的灵活性,促进了学生思维的发展。教学内容生活化不仅能激发学生兴趣,产生亲切感,而且使学生认识到现实生活中蕴藏着丰富的数学问题。开课时收集的数据一方面激发了学生学习的兴趣,同时也缩短了教师和学生的距离,课后“你再长几岁,这个岁数就能被3整除”这一开放题富有情趣,给学生留下了深刻的印象。
3、着力改变学生的学习方式。
学习方式的转变是本节课的主要特色。本节课始终以自主探索、合作交流为主要的学习方式,让学生通过自主选教学内容,举例验证等独立思考和小组讨论等合作探究活动,获得教学知识、感悟方法。如在课的第二阶段,设计三个层次的教学活动,让学生充分探索、讨论、交流,使学生真正成为学习的主人。第一层通过学生猜测、举例、选数字组数,使学生产生两次认知冲突;第二层通过交换三位数数字的位置,仍然没能发现特征,产生第三次认知冲突;第三层次通过计算各位上的数的“和、差、积、商”使结论逐渐显露。这一过程不仅培养了学生探究精神,磨练了意志,同时也使学生品尝了成功的喜悦。
4、合理定位教师角色,营造民主、和谐的学习氛围。
课堂教学中只有摆正了师生关系,才可能使学生得到发展。本节课学生始终是数学学习的主人,教师是数学学习的组织者、引导者和合作者。可以从以下两方面看出:一是从师生活动的时间分配上,二是从分层探究、有针对性的适当引导上。这节课从开始到结束,气氛始终处在民主、和谐之中,生活化的学习材料、平等的师生关系和开放的探究方式,
3的倍数特征教学反思4《3 的倍数和特征》一课是在学生自主探究2、5的倍数的特征的基础上进一步学习,我从学生的已有基础出发,把复习和导入有机结合起来,通过2、5的倍数特征的复习,设置了“陷阱”,引导学生进行猜想3的倍数的特征可能是什么,从而引发认知冲突,激发学生的求知欲望,经历新知的产生过程。
一、引发猜想,产生冲突。
前一课时,学生在发现2、5的倍数特征时,都是从个位上研究起的,所以在复习旧知时,我也特意强调了这一点。接下来我引导学生猜想3 的倍数特征是什么时,不少学生知识迁移,提出:个位上是3、6、9的数应该是3 的倍数;3 的倍数都是奇数。提出猜想,当然需要验证,很快就有学生在观察百数表后提出问题:个位上是3、6、9的数只是有些是3的位数,有些不是3的倍数;有些偶数也是3的倍数,而有些奇数却不是3 的倍数。学生的第一猜想被自己否决了。既然没有这么明显的特征,那么在百数表里找出3的倍数,不少学生就开始了繁杂的计算,这个环节我给了他们时间慢慢去算,用意在于体会 ……此处隐藏5319个字……织县级教学能手选拨赛时候第二次上,可以说是“一课两上”。我在第二次备课时完全从另一个角度来处理教材,收获颇丰。下面我就本节课前后两次上课反思如下:
第一次上课我是让学生圈出100以内3的倍数,去观察3的倍数的特征,由此总结出3的倍数的特征,然后实际应用,巩固练习。效果一般。而第二次上课时我是这样做的:使学生在原有认知的基础上产生认知冲突,在学习2、5倍数特征的基础上,让学生猜测是不是3的倍数的特征也要去看数的个位呢,进而产生新的探索欲望,让后在百数表中圈出3的倍数的特征,接着借助学生熟悉的计数器进行两个实验,实验一:验证3的倍数的特诊,实验二:验证不是3的倍数的的数的特征。最后实践应用,课堂检测。
整个教学过程突出了对学生“提出问题—探索问题—解决问题”的能力培养,学生能在猜想、操作、验证、交流、反思、归纳的数学活动中,获得较为丰富的数学经验,也有助于创造性的培养。这就要求我们教师首先要具有创造精神,注重设计宽松和谐民主的教学氛围,尊重学生,抓住一切可以利用的机会,激发学生的创新欲望,学生的创造意识才能得以培养,个性才能充分发展。
反思这节课的不足我觉得在每个环节的过渡上要做的更加自然、一气呵成会更好。由于本节课按照赛教要求只有30分钟,时间的把握做的还不够恰到好处。总之,教无定法,学海无涯,需要我不断的学习和实践,不断提高自身素质和专业水平,大力提高教学质量。
3的倍数特征教学反思14站在跳板上学习数学——3的倍数的特征教学反思
《3的倍数的特征》看似一节知识简单的课,但从教学实际来看,是我想得过于简单了,教师注重的不应该仅仅是对知识的掌握,更应该使学生站在跳板上学习数学,关注数学思维的发展 。
“3的倍数的特征”属于数论的范畴,离学生的生活较远,有一定的难度。而2、5的倍数的特征是学生学习这一课的基础。所以,在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望,利用学生刚学完“2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望,因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。但针对这样的环节,也有老师提出反对意见,他们认为教师在教学中不仅要注重知识的正迁移,还要防止负迁移的产生,要能正确地预见学生学习中可能出现的错误,采取适当措施,防患于未然,达到所谓“防微杜渐”的目的;他们满足于学生的一路凯歌,陶醉于学生的尽善尽美,视学生的差错为洪水猛兽。但是课堂就是学生出错的地方,出错是学生的权利,学生的错误是劳动的成果,关键是要看我们教师如何看待学生的错误,有个教育专家说得好:“课堂上的错误是教学的巨大财富”。正式因为如此,我们的新课堂也呼唤“自主、合作、探究”,而真探究必然伴随大量差错的生成,学生总会出现各种各样的错误,我们的课堂教学不应该有意识地去避免学生犯错误。因此,我们教师在课堂中要有沉着冷静的心理、海纳百川的境界和从容应变的机智,给学生一个出错的机会和权利。
其次,看一个数是不是2、5的倍数,只需看这个数的个位。个位是0、2、4、6、8的数就是2的倍数,个位是0、5的数就是5的倍数。而3的倍数特征则不然,一个数是不是3的倍数,不能只看个位,而要看它所有所有数位上的数的和是不是3的倍数。在教学中,我和大多数的教师一样,更多的是关注两者的不同,注重让学生对两种特征进行区分,因此,教学中往往刻意对比强化,凸显这种差异。但这样的处理很明显在数论的角度上割裂了两者的共同点。实际上教师在引导学生发现3的倍数的独特特征的同时,也应该注意引导学生归纳2、3、5倍数特征的共同点。别小看这寥寥数言的引导,实质它蕴藏着深意。因为从数论角度讲一个数能否被2、3、5乃至被其它数整除,其研究的理论基础是一样的:即如果各个数位上的数被某数除,所得的余数的和能够被某数整除,那么这个数也一定能被某数整除。当然,小学生由于知识和思维特点的限制,还不可能从数论的高度去建构与理解。但是,这并不意味着教师不可以作相应的渗透。事实上,正是由于有了教师看似无心实则有意的点拨:“其实3的倍数特征与2、5的倍数特征其实有一点还是很像的,不知同学们注意到没有?”学生才可能从2、3、5倍数特征孤立、割裂、甚至是相互对立的表象中跳离出来,朦胧地感受到这三者之间的联系:2、3、5倍数特征可以看作是一样的,都是看它是不是谁的倍数,只不过判断一个数是不是2、5的倍数,只需看这个数的个位是不是2、5的倍数,而判断一个数是不是3的倍数就要看它所有数位的和是不是3的倍数。
3的倍数特征教学反思15《3的倍数的特征》的教学是五年级数学上册第三单元“因数与倍数”中一个重要知识点,是学生在学习了2和5的倍数特征之后的新内容。
3的倍数的特征与2和5的倍数的特征有很大差别,2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我在本节课设计理念上,突出以学生为主体,教师为主导,方法为主线的原则,从现象到本质,从质疑到解疑。当然本节课也存在很多问题,下面我进行做几点反思。
1、瞄准目标,把握关键
在导入环节,我通过复习旧知识进行“热身”。由于学生已经掌握了2和5倍数的特征,知道只要看一个数的个位就能判断一个数是不是2或5的倍数,因此在学习3的倍数特征时,自然会把“看个位”这一方法迁移过来,尽管是负迁移。实际上,鲜明的冲突让学生发现却不是这样,于是新旧知识间的矛盾冲突使学生产生了困惑,有了新旧知识的矛盾冲突,就能激发起学生探究的愿望,这样有利于学生对新知识的掌握,有效的将新知识纳入到原有的认知结构中去,还有利于培养学生深入探究的意识和能力。
2、经历过程,授之以渔
猜想3的倍数特征是基础,在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想。验证也是有技巧的,30以内即可发现3的倍数中,个位上可能是10个数字中的任何一个,之前的判断已经站不住脚。之后继续探究,在100以内,基本可以发现规律,但为了严谨,必须跳出百数表,在100以上的数中去验证这个规律。最后,引导学生理解这个结论背后的原理,为什么它的规律和之前的规律不一样?这样一来,学生不仅学会本节课知识,更掌握了科学的探究方法。
3、追求本真,知其所以然
本节课的目标定位上,我考虑到学生的已有认知基础,我决定引导学生探索3的倍数的特征背后的道理。这一尝试建立在我对学生学情把握的基础上,因为3的倍数的特征的结论一但得出,运用起来没有难度,后面的练习往往成了“休闲时间”,而进一步提升探索难度,无疑是开发思维的良好契机。我运用数形结合的方法逐步深入,最后还是把话语权留给学生,这样就给予不同学生各自适应的个性化学习方略,真正做到了让每位同学在数学上都得到发展。
文档为doc格式