数学史读后感

时间:2024-07-15 23:35:40
数学史读后感

数学史读后感

认真品味一部名著后,大家心中一定有很多感想,是时候静下心来好好写写读后感了。那么你会写读后感吗?下面是小编收集整理的数学史读后感,欢迎大家分享。

数学史读后感1

我阅读《数学史通论》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学史通论》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,《数学史通论》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。

数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。

它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去20xx年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原着中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。

数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中

数学史读后感2

从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。

本书于1958年出版,作者J.F.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。

上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。

古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。

在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。

文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“>”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。

7世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。

8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。

纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的`数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。

历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。

数学史读后感3

数学是一门枯燥的学科,我从小就这样认为。但是通过这个寒假,这本《这才是好读的数学史》,打开了知识文化的一扇大门,让我对数学有了更深入的了解与思考,并且领悟到了其中的魅力。

数学的历史非常悠久,从很久很久以前就已经有了数学。那时候的人们刚刚接触到了它,而随着时代的变迁,数学的文化越来越博大精深。正是因为那些伟大的数学家们所做出的巨大贡献,才让后代的人类将数学发展得越来越好。例如一位亚历山大的希腊数学家欧几里得,他从一小部分公理中总结了欧几里德几何的原理,还写了另外五部关于球面几何、透视、数论、圆锥截面和严谨性的作品。欧几里得因此被人们称为“几何学之父”。

数学文化奇幻无穷。最让我印象深刻的便是阿拉伯数学文化。阿拉伯数学家不仅让代数成为数学的重要组成部分,而且还在几何学和三角学方面做出了重要的贡献。同时,“帕斯卡三角形”也就是“杨辉”三角也被他们所了解。阿拉伯数学文化的特点则是能够从其他数学的知识中汲取到最有用的精华,并且发展它。

数学中有很多被数学家们所发现和证明的公式、定义,我们都认为那是枯燥的、繁琐的。但是数学有自己的灵魂与存在的意义,普罗鲁克斯曾说过“数学赋予它所发现的真理以生命;它唤起心神,澄清智慧;它给我们的内心思想增添光辉;它涤尽我们有生以来的蒙昧与无知。”因为有了数学,人类的民族发展得越来越顺利;因为有了数学,人类的生活变化得多姿多彩……

数学的发展并不是我们想象中的那么顺利,而是经历了无数的困难和挫折,才成为了我们现代的数学。它的成就则是数学家们日日夜夜的研究与思考所造就的,让数学真正地显露出了它的价值。中国的数学源远流长,拥有着它自己的特色与意义。重大的数学定义、理论总是在继承与发展原有的理论的基础所建立起来的,它们不但不会改变原本的理论,而且经常将最初的理论思想包含进去。正是因为我们不断地为它注入灵魂力量,它才能越来越强大,越来越辉煌!

数学史的学习让我们更加理解数学的意义,从而在知识的海洋中不断发现、不断进取、不断研究,逐渐形成对数学的热爱!

数学史读后感4

在我阅读数学史之前,数学在我的脑子里,就是一个很难很难的学科。数学漂浮在我的脑海里,像一只枯萎的蝴蝶,死板而又无味。

但是在阅读数学史之后我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

就像书中所写的一样,或许在数学课上讲一些有趣的小故事,可以提高学生的专注力和兴趣,然后引入课堂。

可能是由于我见识短浅(?)我一直认为中国数学是非常高深,深不可测的那种,认为中国数学在世界有最高的影响力和地位。但其实中数是非常具有影响力(九九乘法表,11的两边一拉中间相加)但希腊数学是独一无二的,尽管在现在的数学之中,希腊数学家的逻辑推理和证明都是摆在数学中心的。数学家或许有许多不同,但他们绝对拥有财力·时间和数学天赋。他们的严谨性和专业精神恐怕是我毕生难以追求的吧。

总的来说,数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系,而这些联系就像龙须酥一样香浓醇厚,万般丝滑,密不可分,是不能够轻易斩断的关系!

数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

我相信在未来,数学史带给我的影响,会影响到我的一生,我也希望中国数学能够源远流长,从《九章算术》到《周髀算经》呈现出更多的”东方数学“的色彩!

数学史读后感5

与其把数学科学化,把它当做一门严谨的学科小心翼翼地探寻着,倒不如把它当做一件普通不过的事物,至少,这样的数学更加灵动迷人。

数学,是一样很孤独的东西。它不像是诗歌那样,文人骚客共聚一堂举酒高歌,动情处就即兴脱口,一首千古传唱的诗就诞生了。它也不像艺术品那样,饱含着美感与灵感,可它却汗艺术气息,虽然它的成果是冷冰冰的智慧结晶,但是它的发展过程是饱含悲欢愁的。我想这个过程是孤独的,但是那个创造者对于这样的孤独,他(她)是甘之如饴的。因为那是属于他(她)世界里的一朵奇葩,他(她)看着那株他们倾尽所有汗水与智慧浇灌出来的数学之花,灿烂绽放在这片大地上,何其欣喜。

诸多数学家中,我尤其敬佩祖冲之一家。他们是把数学当做传家宝一样,代代相传,一脉同心。或许因学术有所成而名垂青史、流芳千古的只有祖冲之与祖恒二人,但是也正因为他们的前辈潜心研究,让他俩拥有比常人更加优越的条件,他们也更加容易成功。他们的家族史让我所钦佩的,无论是他们的成就或是执着,都那么的独树一帜,至少在数学史上是如此。

但在数学发展过程中,它也受到了一些人的亵渎。把它当做成名的手段。并不是说这些人有错,他们只是从自己的成果里获取一些名利,满足个人的欲望,正所谓,人不为己,天诛地灭。这些人的初衷是纯洁的,只是在成就与名利俱来的诱惑下变了味。比如说数学怪人卡尔达诺,我不对他的行为加以任何评论,只是为数学惋惜,它并非为功利造台阶,但它却成全了功成名就。它原本只是单纯而神圣的智慧成就,但它的发展却掺杂了许许多多人情世故。更令人伤心的是阿贝尔。当他是一名无名而有志的少年时,受尽嘲笑与蔑视;当他守得云开见月明,证明了一般五次一元方程的不可性时,他被一句“不可能的事”否定了;当上天给了他一次次希望在一次次让他失望而归,他终于无力和命运抵抗,为他遗憾的一生画上句点了。然而讽刺的事情发生在两天之后,阿贝尔被聘任为教授。阿贝尔的不幸事数学发展史上的灾难,或许曾经因为这样那样原因被埋没的人大有人在,他们本拥有一腔热情为数学做贡献,但现实击垮了他们。

无论如何,我还是想在最后说一句,不管被誉为“伟大数学家“的人还是为数学研究默默奉献着的人,他们都是可敬的,因为他们对这份孤独的数学有着不一样的热爱。

数学史读后感6

首先,看到这本书后,第一个感觉是这本书太厚了,肯定无聊。而第二个印象是在每一个概念后的“见数学概念小史某某页”,然后这最重要的事是这书讲了这我不曾了解的事。

从过去到现在,先是古埃及人,他们的方法对于现代太不实用了,但是他们还是聪明,知道用符号,用两个符号来表示1()和10(),这东西就是幂,在生活中肯定很少用,而且我还发现这数学呢我一直认为是想从简单到复杂,但是并不是如此,可以说是相反的。

比巴伦的数学家们特别有趣,造的题目也有趣,不实用,但是很好玩,在本书的15页,有这原题,这大概就是用一根芦苇去测量田有多大,其实就是二元一次方程,但是看完头都大了,不知到底在讲什么。

继续读着,诶!看见了老熟人——欧几里得,从小学周围的人都在谈论着他,给我讲他的旷世巨作《几何原本》,过去经常说“好,好,好,《几何原本》好。”但是我并不知道这书居然是公元前三千多年左右写的,我一直认为他是希腊人,但是他居然是埃及人,这好奇怪,据书中说有很多的希腊数学家都不是希腊人。

继续读,数学也和天文学有关,从天文学中又出现了三角学,原来三角学是从天文学出来的,在读阿拉伯数学时,看见了“杨辉”三角形,但是这书中的是“帕斯卡三角形”,其实也是“杨辉”三角形,所以后者好记些。

微积分里面看见了伽利略,但是似乎不是他的主场,所以不管他,微积分这里知道了流数和微分基本上都是我们现在所称的导数。他们的发明者分别是牛顿和莱布尼茨。牛顿这特别熟悉了,这莱布尼茨是个律师和数学家,他最可以的是他的公式几乎都是在颠簸的马车上写下。在各个学科每每留下了著作。

还有一个人让我记住了,叫做欧拉,不光名字好记,他自己也是一个喜欢记的人,据书上所说,他可以说是一个论文天才也是数学天才,因为只要他有一个好的方法,自己马上就写一篇论文,来记下自己的观念。

这便是这《这才是好读的数学史》上篇的读后感,不是特别无聊,反而还有一些有趣,整体的布局也不错,让读者一步步深入,有特别强的吸引力,可能因人而异吧,下篇就是纯数学了,所以这便是我的读后感了。

《数学史读后感.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式